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THEORETICAL VULNERABILITIES IN MAP SPEAKER ADAPTATION
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ABSTRACT

We analyze the theoretical vulnerability of maximum a poste-
riori(MAP) speaker adaptation, which is widely used in prac-
tical speaker recognition systems. First, we proved that there
exist a set of feature vectors, what are called wolves, which
can impersonate almost all the registered speakers with prob-
ability asymptotically close to 1 with at most two trials. Sec-
ond, our experiment shows that the wolves with appropriate
parameters achieved 0.99 of successful impersonation rate on
Spear speaker recognition toolkit with ATR speech database.

Index Terms— biometrics, speaker recognition, wolf at-
tack, impersonation, MAP adaptation

1. INTRODUCTION

Security of biometric authentication systems is convention-
ally measured by the false acceptance rate (FAR), which
gives the average error rate, or equivalently successful imper-
sonation rate when imposters present their biometric infor-
mation. However, it is also possible that imposters present
more prospective biometric information taking advantage of
the environmental conditions and matching algorithms. Une
et al. [1] and Inuma et al. [2] proposed the wolf attack and
its success probability (WAP), which is a new measure that
takes such attacks into account. A wolf is the worst biometric
information that can impersonate any registered users with a
probability much higher than FAR.

The subject of this paper is to investigate the vulnerability
of practical automatic speaker verification(ASV) systems,
specifically, maximum a posteriori (MAP) adaptation based
ASV systems, which derive the speaker model by updat-
ing the well-trained parameters in the Universal Background
Model (UBM) via adaptation. There are many previous
works involving spoofing through voice synthesis [3, 4, 5]
and voice conversion [6, 7, 8, 9, 10]. All of these works have
not evaluated the wolf attack. The main contributions of this
work are as follows:

1. We proved the existence of an asymptotically universal
wolf which can impersonate all registered speakers in
MAP adaptation based ASV algorithms with the usual
linear scoring techniques.

2. Our wolf attack can achieve 99% of successful im-
personation rate (WAP) at most two trials even when
speaker model has a large number of Gaussian com-
ponents. This is experimentally examined using open
source speaker recognition toolkit Spear1 [11] along
with ATR multi-speech database [12].

2. PREVIOUS WORKS

The name, wolf, came from the well-known Doddington
Zoo [13], which refers to a biometric information which
tends to impersonate others. The wolf attack probability is
the maximum false acceptance rate when a single live or fake
biometric information is presented [2, 1]. In other words,
the wolf attack probability (WAP) gives the upper-bound
of successful impersonation probability for any subversive
presentation without stealing the victim’s biometric feature.
Une et al. [1] showed WAP=1.0 for a finger vein authentica-
tion algorithm [14]. Ohki et al. [15] experimentally showed
WAP=0.92 for vector quantization-based ASV systems when
up to 3 trials are allowed for failed attempts. Other previous
results show the vulnerabilities in more general classifiers.
Kryszczuk and Drygajlo [16] reported that likelihood-ratio-
based face classifiers are easily spoofed by the face images to
which white Gaussian noise is superimposed. The noise con-
taminated face images give feature vectors with extremely
small likelihood values to a claimed user model and the
world model (UBM) simultaneously. They reported [16]
“above 50% of noise almost every claim is accepted.” Ohki
and Otsuka [17] investigated more general vulnerability in the
likelihood-baed classifiers where the likelihood values are not
necessarily small. They focused on the approximation error
between UBM and true distribution of over the feature space.
Their experiments showed WAP=0.6 for the GMM-UBM
ASV system [18].

In the context of speaker verification, Reynolds [19]
showed that maximum a posteriori (MAP) adaptation based
Gaussian mixture modeling provides high-accuracy speaker
verification even under the situation where a few samples
are available to create each speaker model. MAP adaptation
derives each speaker model from UBM. Thus, it inherently

1http://pypi.python.org/pypi/bob.spear



provides homogeneous models among the individual speaker
models and UBM. In the following section, we investigate the
theoretical vulnerability in the MAP adaptation-based ASV
systems [19].

3. VULNERABILITY IN MAP ADAPTATION

3.1. Map Adaptation

Given a UBM as M -mixture of D-dimensional Gaussian dis-
tribution over feature space X s.t.

p(x) =
M∑

i=1

wipi(x) (1)

where wi are the mixture weights sum to unity, pi(·) are the
Gaussian probability functions given below with µi and Σi

being the mean and the covariance matrix respectively.
Let U be a set of speakers. A training vector from the hy-

pothesized speaker u ∈ U is denoted by Xu = {xu
1 , . . . , x

u
T }.

A speaker model p̂(x|u) is adapted from the UBM as follows.
For mixture i in the UBM, we compute

Pr(i |xu
t ) =

wipi(xu
t )∑M

j=1 wjpj(xu
t )

. (2)

Using this Pr(i |xu
t ) and xu

t , we compute the weight, mean
and variance parameters for the expectation step.

ni =
T∑

t=1

Pr(i |xu
t ) (3)

Ei(x) =
1

ni

T∑

t=1

Pr(i |xu
t )x

u
t (4)

Ei(xx
⊤) =

1

ni

T∑

t=1

Pr(i |xu
t )x

u
t x

u
t
⊤ (5)

where Ei(·) computes the expectation weighted by Pr(i |xu
t ).

In the adaptation step, we update the old UBM statistics to
create adapted parameters with the following equations.

ŵu
i = [αw

i ni/T + (1− αw
i )wi]γ

µ̂u
i = αm

i Ei(x) + (1− αm
i )µi

Σ̂u
i = αv

iEi(xx
⊤) + (1− αv

i )(Σi + µiµ
⊤
i )− µ̂u

iµ̂
u
⊤
i

Reynolds et al. [19] introduced the adaptation coefficients
{αw

i ,α
m
i ,αv

i } which control the balance between old and
new estimates. The scale factor γ is introduced to ensure the
mixture weights sum to unity. αv

i = 0 is called linear scoring
where covariance matrices are invariant such that Σ̂u

i = Σi.
It is widely used for its significant reduction in computation.
With the MAP adapted parameters for the individual model
(ŵu

i , µ̂
u
i , σ̂

u
i ), the model for the speaker u is given as

p̂(x|u) =
M∑

i=1

ŵu
i p̂i(x|u), (6)

where p̂i(x |u) = N (x |µu
i ,Σ

u
i ).

3.2. Likelihood Ratio

Likelihood-ratio-based decision is the following two-class
hypothesis test. According to Neyman-Pearson lemma [20],
this is known as the most powerful.

Lu(x) =
p(x |u)
p(x)

(7)

where we assume p(x |u) ≈ p(x) with u = U \ {u} for a
sufficiently large speaker set U .

In the MAP adaptation, each speaker model is adapted
from the UBM learning the training vector Xu. Thus, the
real decision is made by the following equation using Eq. (6),

L̂u(x) =
p̂(x |u)
p(x)

. (8)

3.3. Wolf in Linear Scoring

We define a wolf as a biometric feature which gives higher
acceptance rate, say δ ≥ FAR, than the normal features.

Definition 1. (δ-wolf) Given a probability distributions p(x)
representing UBM and p(x |u) representing speaker models
for all u ∈ U , and given a threshold t > 0, for any δ ≥ FAR,
a feature vector x is said to be δ-wolf if it satisfies

ARt(x) = Pr[L̂u(x) > t] ≥ δ (9)

where probability is taken over u ∈ U .

Lemma 1. Given a feature vector v ∈ X with ∥v∥ = 1 and a
speaker u ∈ U , compute the maximum standard deviation σ̂u

and σ projected on the feature vector v as follows.

σ̂u
−2

= min
1≤i≤M

v⊤Σ̂u
i

−1
v (10)

σ−2 = min
1≤i≤M

v⊤Σ−1
i v (11)

If σ̂u > σ is satisfied, then for any threshold t > 0, there
exists λ0 > 0 such that for any λ > λ0,

L̂u(λv) > t. (12)

Proof. (Sketch) We take the log of L̂u, which leads to

log L̂u(λv) ≈
−λ2

2

(
1

σ̂u
2 − 1

σ2

)
+ o(1). (13)

This is a convex function of λ under the condition σ̂u > σ.
Hence the lemma.



Lemma 1 holds for the general MAP adaptation. It im-
plies that injecting sufficiently large vectors in a speaker voice
sample will make impersonation successful regardless of the
threshold. This result cannot directly apply to the linear scor-
ing case where σ̂u = σ for all u ∈ U . Interestingly, however,
similar analysis can lead to 0.5-wolf as stated below.

Theorem 1. In the case of linear scoring in MAP adaptation,
there exists λt > 0 for all threshold t ∈ R such that exactly
half of the feature vectors in a set {x ∈ X | ∥x∥ ≥ λt} are
0.5-wolf. Namely,

Pr[L̂u(x) > t] ≥ 0.5 (14)

where the probability is taken over u ∈ U . More precisely,
every vector x ∈ {y ∈ X | ∥y∥ ≥ λt} satisfies the following.

Pr[L̂u(x) > t] + Pr[L̂u(−x) > t] = 1 (15)

Proof. From the definition, Σ̂u
i = Σi for all u ∈ U in linear

scoring. Apparently, σ̂u = σ holds for all u ∈ U from Eq.(10)
and Eq.(11). Given v, let i give the minimum in Eq. (11). For
brevity, we write

σ−2 = σ̂u
−2

= v⊤Σ−1
i v. (16)

Let x = λv with λ > 0. log L̂u(λv) can be written as follows.

log L̂u(λv) ≈ −(λv − µ̂u
i )

⊤Σ−1
i (λv − µ̂u

i )

2

−−(λv − µi)⊤Σ
−1
i (λv − µi)

2
+ o(1)

= −(µ̂u
i − µi)

⊤Σ−1
i (λv − µi + µ̂u

i

2
) + o(1)

= −λ(µ̂u
i − µi)

⊤Σ−1
i v + o(1) (17)

This is a linear function of λ. Set λt as1

λt > max
u∈U

∣∣∣∣∣
log t+ o(1)

(µi − µ̂u
i )

⊤Σ−1
i v

∣∣∣∣∣, (18)

Then, for all x ∈ {y ∈ X | ∥y∥ ≥ λt}, each u′ ∈ U satisfies
L̂u′(x) > t or L̂u′(−x) > t. Thus, a vector x divides U into

U+
x = {u′ | L̂u′(x) > t} and U−

x = {u′ | L̂u′(−x) > t}.

It is easily proved that U = U+
x ∪ U−

x and U+
x ∩ U−

x = ∅.
Thus,

Pr[L̂u(x) > t] =
| U+

x |
| U | , Pr[L̂u(−x) > t] =

| U−
x |

| U | (19)

where the probability is taken over u ∈ U . Eq. (19) directly
implies Eq. (15). Further, we see the complementary relation
in U+

x = U−
−x and U−

x = U+
−x. This implies that exactly half

of the set satisfies Eq. (14). Hence the theorem.
1We assume (µi − µ̂u

i )
⊤Σ−1

i v ̸= 0 for all u ∈ U for brevity of proof.
From performance, µi ̸= µ̂u

i for all u. Choosing orthogonal v is negiligible.

4. EXPERIMENT

4.1. Wolf Attack

While the discussion on the theoretical vulnerability of an
ASV system, we assume the ideal ASV system where all
acoustic equipment and environment have ideal characteris-
tics so that an attacker can control a feature vector received
by the system completely as intended. Namely, the attacker
can input an arbitrary biometric feature to a matching algo-
rithm.

From Theorem 1, a feature vector x ∈ X with sufficiently
larger norm than λt is a 0.5-wolf . One can create such a wolf
feature by sampling a feature vector x from a training set, say
X , and scale it by a fixed large constant C. Our wolf feature
vector VW ∈ X is simply constructed as follows:

VW = Cx for every sampled x ∈ X (20)

We define two types of attack samples as a sequence of fea-
ture vectors of length F . The first type is called “full-frame
wolf,” which is comprised of VW in every occurrence of a
feature vector. The second type is called “single-frame wolf,”
which is comprised of the real feature vectors but exactly one
of the occurrences is replaced with VW . In our experiment,
we selected the feature vector x randomly from UBM mean
vectors. Our experiment shows that C ≤ 1000 achieved suf-
ficiently high WAP at all settings. Furthermore, we examined
the impact of double trials using both positive VW and neg-
ative −VW wolf features as described in 3.3. This is only
applicable if the targeted ASV system allows multiple trials.

4.2. Experimental Setup

We evaluated the proposed wolf attack using the speech
data included in the ATR multi-speaker database [12]. The
database is a collection of short time 16kHz sampled utter-
ances of 294 male speakers and 410 female speakers. For
each speaker there are 50 utterances of approximately 4 sec-
onds. We used 200 male and 200 female to keep the ratio
of male to female speaker to the same for overall evaluation.
We conduct our wolf attack experiments on Spear, an open
source toolbox for speaker recognition. Spear implements a
set of complete speaker recognition toolchain including MAP
adaptation based GMM-UBM algorithm. Spear filters out the
non-speech part using VAD algorithm [21] and calculates 60
coefficients MFCC for each frame.

The evaluation was conducted using 200 speakers as the
UBM training set and 100 speakers as the development set
and remaining 100 speakers as the evaluation set. For the de-
velopment and the evaluation set, we separated each speaker’s
50 utterances to 15 utterances for speaker model training and
35 utterances for score calculation. UBM model order MU

was varied in the range 64, 128, 256, and 512 components.
Since the speaker model is derived by updating the well-



(a) full-frame attack (C = 100, F = 400)

(b) single-frame attack (C = 1000)

Fig. 1: Wolf attack probability in proposed wolf attack. DET
curve of wolf attacks drawn by FRR and WAP were labelled
as “FRR-WAP”. DET curve of baseline system drawn by FRR
and FAR was labeled as “FRR-FAR”.

trained parameters in the UBM via adaptation, speaker model
order is always equivalent to the UBM model order.

We evaluated two types of wolf attack described in 4.1.
For the full-frame attack, we set the frame length F to 400
frames. Constant factor C is set to 100 for full-frame attack
and 1000 for single-frame attack, respectively.

4.3. Experimental Results

Fig.1(a), (b) shows the wolf attack probability calculated in
our proposed wolf attack along with baseline performance. In
this evaluation, DET curve was drawn between the FRR and
WAP instead of FAR. Note that DET curve indicates better
performance when it is closer to the lower-left corner of the
graph. In other words, wolf attack is more efficient when it
is closer to the upper-right corner of the graph. As shown
in both figures, we can see that the proposed wolf achieved
clearly high impersonation performance.

Let t = tEER be the threshold that can achieve Equal

Table 1: List of EER, WAP, WAP (threshold t was fixed to
tEER). second trial shows a WAP at most two trials.

UBM / Speaker Model Order

64 128 256 512

Baseline Performance

EER 0.014 0.012 0.009 0.008

trial full-frame attack

WAP first 0.52 0.51 0.48 0.51
second 0.99 0.98 0.99 0.99

WAP first 0.52 0.50 0.51 0.51
second 0.99 0.99 0.99 0.98

trial single-frame attack

WAP first 0.28 0.39 0.34 0.31
second 0.46 0.54 0.69 0.53

WAP first 0.28 0.38 0.37 0.29
second 0.47 0.57 0.69 0.49

Error Rate (EER) for the baseline performance. Table 1 indi-
cates EER, WAP and WAP when threshold t was set to tEER.
WAP is calculated using the development set. In Table 1, we
also show the WAP in case the targeted system allows at most
two trials. In this experiment, imposter uses VW and −VW

for the two trials.
As shown in Table 1, the full-frame attack can achieve al-

most 50% of WAP regardless of the number of Gaussian com-
ponents. Moreover, it achieved 99% of WAP when targeted
system allows at most two trials. These results confirms the
existence of 0.5-wolf proved in the Theorem 1. Additionally,
we can see that single-frame attack achieved 28% to 39% in
the first trial and 46% to 69% of WAP in the second trial. This
fact means that an attacker can impersonate to the targeted
system with quite high probability using the voice which con-
tains only single frame (10ms) of wolf sample.

5. CONCLUSION

In this study, we investigated theoretical vulnerabilities in
MAP adaptation based speaker recognition system. Our re-
markable result is that the proposed wolf attack achieved 99%
of successful impersonation with at most two trials on Spear
toolkit and ATR speech database even when the speaker
model has a large number of Gaussian components. Since we
assumed the ideal attacker in this study, it is left to investigate
how to apply our wolf attack to microphone or transmission
level spoofing attacks such as voice conversion attacks. Pos-
sible countermeasures may include that UBM takes larger
variance than individual speaker models in MAP adaptation.
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